Abstract
Measuring the ultrafast dynamics of chiral molecules in the gas phase has been a long standing and challenging quest of molecular physics. The main limitation to reach that goal has been the lack of highly sensitive chiroptical measurement. By enabling chiral discrimination with up to several 10% of sensitivity, photoelectron circular dichroism (PECD) offers a solution to this issue. However, tracking ultrafast processes requires measuring PECD with ultrashort light pulses. Here we compare the PECD obtained with different light sources, from the extreme ultraviolet to the mid-infrared range, leading to different ionization regimes: single-photon, resonance-enhanced multiphoton, above-threshold and tunnel ionization. We use single and multiphoton ionization to probe the ultrafast relaxation of fenchone molecules photoexcited in their first Rydberg states. We show that time-resolved PECD enables revealing dynamics much faster than the population decay of the Rydberg states, demonstrating the high sensitivity of this technique to vibronic relaxation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.