Abstract

Quark-gluon plasma during its initial phase after its production in heavy-ion collisions is expected to have substantial pressure anisotropies. In order to model this situation by a strongly coupled N=4 super-Yang-Mills plasma with fixed anisotropy by means of AdS/CFT duality, two models have been discussed in the literature. Janik and Witaszczyk have considered a geometry involving a comparatively benign naked singularity, while more recently Mateos and Trancanelli have used a regular geometry involving a nontrivial axion field dual to a parity-odd deformation of the gauge theory by a spatially varying theta parameter. We study the (rather different) implications of these two models on the heavy-quark potential as well as jet quenching and compare their respective predictions with those of weakly coupled anisotropic plasmas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.