Abstract
At 298 K, the surface tension of ionic liquids (ILs) of the 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide series, [CnC1Im][NTf2], ranges from around 35 mN·m–1 for [C2C1Im][NTf2] to just below 30 mN·m–1 for [C12C1Im][NTf2]. However, the decrease rate along the series is not constant: a large decrease from [C2C1Im][NTf2] to [C8C1Im][NTf2] is followed by almost constant values from [C8C1Im][NTf2] to [C12C1Im][NTf2]. Such behavior is hard to interpret from a molecular point of view without suitable information about the free-surface structure of the different ILs. In this work, we have successfully used the Langmuir principle in combination with structural data obtained from angle-resolved X-ray photoelectron spectroscopy experiments and molecular dynamics simulations, to predict the correct surface tension trend along the IL series. The concepts unveiled for this particular homologous IL family can be easily extended to other systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.