Abstract

The determination of surface-active sites in metal nanoclusters is of great significance for the in-depth understanding of structural evolutions and physicochemical property mechanisms. In this work, the surface-active sites of the Au5Ag11(DMBT)8(DPPOE)2 cluster template towards metal-/ligand-exchange reactions were unambiguously identified at the atomic level. The active-site tailoring of this nanocluster gave rise to three derivative nanoclusters, Au5Ag9Cu2(DMBT)8(DPPOE)2, Au5Ag11(DMBT)6(DCBT)2(DPPOE)2, and Au5Ag11(DCBT)8(DPPOE)2. The single-crystal structural analysis revealed that all these M16 (M = Au/Ag/Cu) clusters exhibited almost the same framework. Besides, the surface-active site tailoring contributed to significant changes in optical absorptions and emissions of these metal nanoclusters. The findings in this work not only provide an in-depth understanding of the active-site tailoring of cluster surface structures but also develop an intriguing template that enables us to grasp the structure-property correlations at the atomic level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call