Abstract

Limited structural and dynamic information on membrane proteins and peptides exist. New biophysical/structural biology methods are needed to probe these systems in a lipid bilayer. The Lorigan lab is applying unique hybrid NMR and spin-label EPR spectroscopic techniques to study membrane proteins. Magnetic resonance spectroscopic data of 15N-, 2H-labeled and/or spin-labeled membrane proteins incorporated into vesicles and bicelles will be presented. State-of-the-art pulsed EPR techniques such as Electron Spin Echo Envelope Modulation (ESEEM) spectroscopy, and Double Electron-Electron Resonance (DEER) spectroscopy will be used. The ESEEM technique can determine short to medium range distances (out to about 8 A) between a site-specific nitroxide spin label and a nearby NMR-active isotopic labeled residue for a variety of different peptides and proteins which ultimately can be used to determine the difference between an α-helical and β-sheet secondary structure. DEER can be used to measure distances between 2 spin labels out to about 70 A. We have shown a huge improvement is sensitivity with DEER measurements at Q-band when compared to X-band.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call