Abstract

Context. The Orion molecular cloud is the closest region of high-mass star formation. It is an ideal target for investigating the detailed structure of massive star-forming filaments at high resolution and the relevance of the filament paradigm for the earliest stages of intermediate- to high-mass star formation. Aims. Within the Orion A molecular cloud, the integral-shaped filament (ISF) is a prominent, degree-long structure of dense gas and dust with clear signs of recent and ongoing high-mass star formation. Our aim is to characterise the structure of this massive filament at moderately high angular resolution (8′′ or ~0.016 pc) in order to measure the intrinsic width of the main filament, down to scales well below 0.1 pc, which has been identified as the characteristic width of filaments. Methods. We used the ArTéMiS bolometer camera at APEX to map a ~0.6 × 0.2 deg2 region covering OMC-1, OMC-2, and OMC-3 at 350 and 450 μm. We combined these data with Herschel-SPIRE maps to recover extended emission. The combined Herschel-ArTéMiS maps provide details on the distribution of dense cold material, with a high spatial dynamic range, from our 8′′ resolution up to the transverse angular size of the map, ~10–15′. By combining Herschel and ArTéMiS data at 160, 250, 350, and 450 μm, we constructed high-resolution temperature and H2 column density maps. We extracted radial intensity profiles from the column density map in several representative portions of the ISF, which we fitted with Gaussian and Plummer models to derive their intrinsic widths. We also compared the distribution of material traced by ArTéMiS with that seen in the higher-density tracer N2H+(1–0) that was recently observed with the ALMA interferometer. Results. All the radial profiles that we extracted show a clear deviation from a Gaussian, with evidence for an inner plateau that had not previously been seen clearly using Herschel-only data. We measure intrinsic half-power widths in the range 0.06–0.11 pc. This is significantly larger than the Gaussian widths measured for fibres seen in N2H+, which probably only traces the dense innermost regions of the large-scale filament. These half-power widths are within a factor of two of the value of ~0.1 pc found for a large sample of nearby filaments in various low-mass star-forming regions, which tends to indicate that the physical conditions governing the fragmentation of pre-stellar cores within transcritical or supercritical filaments are the same over a large range of masses per unit length.

Highlights

  • It is well established that star formation takes place in dense molecular clumps embedded in large molecular clouds

  • We provide, in the fifth column of Table 1, the half-power diameter derived from Plummer fitting: DPHlPummer =

  • Based on a column density map at 36 resolution built from Herschel Gould Belt Survey (HGBS) data, Stutz & Gould (2016) find that the radial distribution of gas near the integral-shaped filament (ISF) is well represented by a power law

Read more

Summary

Introduction

It is well established that star formation takes place in dense molecular clumps embedded in large molecular clouds. The evolution of these dense clumps towards the onset of gravitational collapse and the formation of solar-type stars is relatively well understood in outline, but several key questions remain unanswered, including how the star formation rate and efficiency depend on the environmental conditions and whether there are. Most detailed (resolved) studies to date have concentrated on a few, typically nearby clouds, where mostly low-mass and solar-type stars are forming (Arzoumanian et al 2011; Hacar et al 2013; Könyves et al 2015, among others)

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call