Abstract

AbstractThe structure and Franck–Condon region of protochlorophyllide a, a precursor in the biosynthesis of chlorophyll and substrate of the light‐regulated enzyme protochlorophyllide oxidoreductase (POR), were investigated by Raman and resonance Raman (RR) spectroscopy. The spectroscopic results are compared to the spectra of the structurally closely related porphyrin model compound magnesium octaethylporphyrin (MgOEP), and interpreted on the basis of density functional theory (DFT) calculations. It is shown that the electronic properties of the two porphyrin macrocycles are affected by different vibrational coupling modes, resulting in a higher absorption cross section of protochlorophyllide a in the visible spectral region. Furthermore, a comparison of the Fourier transform (FT)‐Raman and RR spectra of protochlorophyllide a indicates the modes that are resonantly enhanced upon excitation. Based on vibrational normal mode calculations, these modes include CC ring‐breathing and CC stretching vibrations of the porphyrin macrocycle. In particular, the strong band at 1703 cm−1 can be attributed to the CO carbonyl vibration of the cyclopentanone ring, which is attached in conjugation to the π‐electron path of the porphyrin ring system. The enhancement of that mode upon electronically resonant excitation is discussed in the light of the reaction model suggested for the photoreduction of protochlorophyllide a in the POR. Copyright © 2009 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.