Abstract
Many cellular processes are controlled by protein-protein interactions, and selective inhibition of these interactions could lead to the development of new therapies for several diseases. In the area of cancer, overexpression of the protein, human double minute 2 (HDM2), which binds to and inactivates the protein p53, has been linked to tumor aggressiveness and drug resistance. In general, inhibition of protein-protein interactions with synthetic molecules is challenging and currently remains a largely uncharted area for drug development. One strategy to create inhibitors of protein-protein interactions is to recreate the three-dimensional arrangement of side chains that are involved in the binding of one protein to another, using a nonnatural scaffold as the attachment point for the side chains. In this study, we used oligomeric peptoids as the scaffold to begin to develop a general strategy in which we could rationally design synthetic molecules that can be optimized for inhibition of protein-protein interactions. Structural information on the HDM2-p53 complex was used to design our first class of peptoid inhibitors, and we provide here, in detail, the strategy to modify peptoids with the appropriate side chains that are effective inhibitors of HDM2-p53 binding. While we initially tried to develop rigid, helical peptoids as HDM2 binders, the best inhibitors were surprisingly peptoids that lacked any helix-promoting groups. These results indicate that starting with rigid peptoid scaffolds may not always be optimal to develop new inhibitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.