Abstract

Bimetallic clusters have aroused increased attention because of the ability to tune their own properties by changing size, shape, and doping. In present work, a structural search of the global minimum for divalent bimetal Be2Mgn (n = 1–20) clusters are performed by utilizing CALYPSO structural searching method with subsequent DFT optimization. We investigate the evolution of geometries, electronic properties, and nature of bonding from small to medium-sized clusters. It is found that the structural transition from hollow 3D structures to filled cage-like frameworks emerges at n = 10 for Be2Mgn clusters, which is obviously earlier than that of Mgn clusters. The Be atoms prefer the surface sites in small cluster size, then one Be atom tend to embed itself inside the magnesium motif. At the number of Mg larger than eighteen, two Be atoms have been completely encapsulated by caged magnesium frameworks. In all Be2Mgn clusters, the partial charge transfer from Mg to Be takes place. An increase in the occupations of the Be-2p and Mg-3p orbitals reveals the increasing metallic behavior of Be2Mgn clusters. The analysis of stability shows that the cluster stability can be enhanced by Be atoms doping and the Be2Mg8 cluster possesses robust stability across the cluster size range of n = 1–20. There is s-p hybridization between the Be and Mg atoms leading to stronger Be-Mg bonds in Be2Mg8 cluster. This finding is supported by the multi-center bonds and Mayer bond order analysis.

Highlights

  • Bimetallic clusters have aroused increased attention because of the ability to tune their own properties by changing size, shape, and doping

  • The configurations transition from hollow 3D structures to filled cage-like frameworks emerges at n = 10 for Be2Mgn clusters, which is obviously earlier than that of n = 14 for Mgn+2 clusters

  • (2) The Be2Mgn clusters keep the original shapes of the corresponding Mgn+2 clusters at n = 1–3, 5–8 and 16

Read more

Summary

Introduction

Bimetallic clusters have aroused increased attention because of the ability to tune their own properties by changing size, shape, and doping. One can draw the following conclusion that these clusters usually exhibit superior properties compared to metals in terms of activity, selectivity, stability, bonding character, and charge transfer. In neutral Mgn clusters, this nonmetal-to-metal transition has been reported to occur around n = 2038 Another main thrust of the studies is a systematic discussion on structural and energetic properties of magnesium clusters along with their magic number. The small beryllium clusters show van der Waals character bonding and the transition from nonmetal to metal occurs around Be1342. The theoretical studies indicate more stability of small sized beryllium clusters with magic number N = 4, 10, 17, and 2043,44 It seems a systematic study is necessary to probe the structural evolution and bonding characters of Be-doped magnesium clusters.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.