Abstract

The stress corrosion cracking (SCC) resistance of the laser beam welded (LBW) AISI 316LN austenitic stainless steel (SS) was assessed and compared to the base metal (BM). The weld joint was produced using a 2.5 kW laser power source at 1500 mm/min welding speed. Microstructural characterization of the base metal and weld joint were done by the following techniques: (i) Optical Microscopy (OM), (ii) Scanning Electron Microscopy (SEM) and (iii) Transmission Electron Microscopy (TEM). The primary mechanical properties such as strength, toughness and hardness of the welded joint were evaluated and compared with the base metal. Stress Corrosion Cracking (SCC) assessment was done in boiling 45 wt% MgCl2 solution at constant load condition as per American Society for Testing and Materials (ASTM) standard G36-94. From the SCC experiment data, steady-state elongation rate ([Formula: see text]), transition time ([Formula: see text]) and time to failure ([Formula: see text]) were found and generalized equations to predict the time to failure of the base metal and LBW joint were successfully derived. The passive film rupture mechanism majorly influenced the SCC failure for 316LN and welded joint. The formation of the discontinuous δ-ferrite network, residual stress and nitrogen pore nucleation at the fusion zone of the LBW joint deteriorated the SCC resistance. The metallographic and fractographic studies revealed brittle transgranular SCC failure of the base metal as well as the LBW joint in all the stress conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call