Abstract

The Rabi-splitting energy represents the strength of light–matter interaction. This quantity is a good benchmark for evaluating the performance of light-modulation devices. Herein, we adopt ZnO microrods as microcavities for whispering gallery modes and propose a convenient method for estimating the light–matter coupling strength based on the shifts of resonant modes in temperature-dependent photoluminescence spectra from 295 to 77 K. Both temperature-dependent index dispersion and Rabi splitting can be extracted. Additionally, the Rabi-splitting energy of bulk ZnO at 0 K is estimated to be about 289 meV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.