Abstract

Chemical proteomics is a versatile tool to investigate protein-small molecule interactions, but can be extended to probe also secondary binding investigating small molecule-protein 1-protein 2 interactions, providing insight into protein scaffolds. This application of chemical proteomics has in particular been applied extensively to cyclic nucleotide (cAMP, cGMP) signaling. cAMP regulates cellular functions primarily by activating cAMP-dependent protein kinase (PKA). Compartmentalization of PKA plays an important role in the specificity of cAMP signaling events and is mediated by interaction of the regulatory subunit (PKA-R) with A-kinase anchoring proteins (AKAPs), which often form the core of even larger protein machineries. The selective binding of AKAPs to one of the major isoforms PKA-R type I (PKA-RI) and PKA-R type II (PKA-RII) is an important feature of cAMP/PKA signaling. However, this specificity is not well established for most AKAPs. Here, we describe a chemical proteomics approach that combines cAMP-based affinity chromatography with quantitative mass spectrometry to investigate PKA-R isoform/AKAP specificity directly in lysates of cells and tissues of any origin. With this tool, several novel PKA-R/AKAP specificities can be easily resolved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.