Abstract

Nanopore sensing is an emerging technology for the single-molecule-based detection of various biomolecules. In this study, we probed the anticancer therapeutic p53 transactivation domain (p53TAD)/MDM2 interaction and its inhibition with a small-molecule MDM2 antagonist, Nutlin-3, using low-noise solid-state nanopores. Although the translocation of positively charged MDM2 through a nanopore was detected at the applied negative voltage, this MDM2 translocation was almost completely blocked upon formation of the MDM2/GST-p53TAD complex owing to charge conversion. In combination with NMR data, the nanopore measurements showed that the addition of Nutlin-3 rescued MDM2 translocation, indicating that Nutlin-3 disrupted the MDM2/GST-p53TAD complex, thereby releasing MDM2. Taken together, our results reveal that solid-state nanopores can be a valuable platform for the ultrasensitive, picomole-scale screening of small-molecule drugs against protein-protein interaction (PPI) targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.