Abstract

Mesoscopic clusters composed of oppositely charged particles are ubiquitous in synthetic and biological soft materials. The effective interaction between these clusters is influenced by their polarizability, that is, the ability of their constituent charges to re-arrange in response to an external electrical field. Here, using coarse-grained simulations, we show that the polarizability of electrically neutral ionic clusters decreases as the number of constituent charges increases and/or their Coulombic interaction strength increases for various ion valencies, ion densities, and degrees of cluster boundary hardness. For clusters of random ionomers and their counterions, their polarizability is shown to depend on the number of polymer chains. The variation of the cluster polarizability with the cluster size indicates that throughout the assembly, the induced-dipole interactions between the clusters may be reduced substantially as they acquire more charges while maintaining zero net charge. Under certain conditions, the induced-dipole interactions may become repulsive, as inferred from our simulations with a polarizable solvent. As a result, the dipole-induced related interactions can serve as a counterbalancing force that contributes to the self-limiting aggregation of charge-containing assemblies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.