Abstract
In this Letter we present a seismological detection of a rising motion of magnetic flux in the shallow convection zone of the Sun, and show estimates of the emerging speed and its decelerating nature. In order to evaluate the speed of subsurface flux that creates an active region, we apply six Fourier filters to the Doppler data of NOAA AR 10488, observed with SOHO/MDI, to detect the reduction of acoustic power at six different depths from -15 to -2 Mm. All the filtered acoustic powers show reductions, up to 2 hours before the magnetic flux first appears at the visible surface. The start times of these reductions show a rising trend with a gradual deceleration. The obtained velocity is first several km s^-1 in a depth range of 15--10 Mm, then ~1.5 km s^-1 at 10-5 Mm, finally ~0.5 km s^-1 at 5-2 Mm. If we assume that the power reduction is actually caused by the magnetic field, the velocity of order of 1 km s^-1 is well in accordance with previous observations and numerical studies. Moreover, the gradual deceleration strongly supports the theoretical model that the emerging flux slows down in the uppermost convection zone before it expands into the atmosphere to build an active region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.