Abstract

Electrode-scale heterogeneity can combine with complex electrochemical interactions to impede lithium-ion battery performance, particularly during fast charging. This study investigates the influence of electrode heterogeneity at different scales on the lithium-ion battery electrochemical performance under operational extremes. We employ image-based mesoscale simulation in conjunction with a three-dimensional electrochemical model to predict performance variability in 14 graphite electrode X-ray computed tomography data sets. Our analysis reveals that the tortuous anisotropy stemming from the variable particle morphology has a dominating influence on the overall cell performance. Cells with platelet morphology achieve lower capacity, higher heat generation rates, and severe plating under extreme fast charge conditions. On the contrary, the heterogeneity due to the active material clustering alone has minimal impact. Our work suggests that manufacturing electrodes with more homogeneous and isotropic particle morphology will improve electrochemical performance and improve safety, enabling electromobility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.