Abstract

Expressed protein ligation was used to replace the axial methionine of the blue copper protein azurin from Pseudomonas aeruginosa with unnatural amino acids. The highly conserved methionine121 residue was replaced with the isostructural amino acids norleucine (Nle) and selenomethionine (SeM). The UV-visible absorption, X- and Q-band EPR, and Cu EXAFS spectra of the variants are slightly perturbed from WT. All variants have a predominant S(Cys) to Cu(II) charge transfer band around 625 nm and narrow EPR hyperfine splittings. The Se EXAFS of the M121SeM variant is also reported. In contrast to the small spectral changes, the reduction potentials of M121SeM, M121Leu, and M121Nle are 25, 135, and 140 mV, respectively, higher than that of WT azurin. The use of unnatural amino acids allowed deconvolution of different factors affecting the reduction potentials of the blue copper center. A careful analysis of the WT azurin and its variants obtained in this work showed the large reduction potential variation was linearly correlated with the hydrophobicity of the axial ligand side chains. Therefore, hydrophobicity is the dominant factor in tuning the reduction potentials of blue copper centers by axial ligands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.