Abstract

Protein post-translational modifications play central roles in regulating protein functions. Lysine threonylation is a newly discovered reversible post-translational modification. However, the biological effect of lysine threonylation on proteins remains largely elusive. Here we report a chemical biology approach for site-specific incorporation of Nε-threonyllysine into proteins with high efficiency and investigate the biological effect of lysine threonylation on Aurora kinase A. Using this unnatural amino acid mutagenesis approach, we find that threonylation of Lys162 of Aurora kinase A inhibits its kinase activity both in vitro and in vivo and that the inhibitory effect can be reversed by the deacetylase Sirtuin 3, which removes the threonylated group from the lysine. Additionally, threonylation of Aurora kinase A makes its substrate p53 more stable in the cell. Therefore, our study demonstrates that site-specific lysine threonylation is a powerful method for probing the biological effect of protein threonylation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.