Abstract

We have investigated the relationship between oligomerization in solution and DNA binding for the bacterial nucleoid protein H-NS. This was done by comparing oligomerization and DNA binding of H-NS with that of a H-NS D68V-D71V linker mutant. The double linker mutation D68V-D71V, that makes the linker significantly more hydrophobic, leads to a dramatically enhanced and strongly temperature-dependent H-NS oligomerization in solution, as detected by dynamic light scattering. The DNA binding affinity of H-NS D68V-D71V for the hns promoter region is lower and has stronger temperature dependence than that of H-NS. DNase I footprinting experiments show that at high concentrations, regions protected by H-NS D68V-D71V are larger and less defined than for H-NS. In vitro transcription assays show that the enhanced protection also leads to enhanced transcriptional repression. Whereas the lower affinity of the H-NS D68V-D71V for DNA could be caused by competition between oligomerization in solution and oligomerization on DNA, the larger size of protected regions clearly confirms the notion that cooperative binding of H-NS to DNA is related to protein–protein interactions. These results emphasize the relative contributions of protein–protein interactions and substrate-dependent oligomerization in the control of gene repression operated by H-NS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.