Abstract
The Escherichia coli fumarate and nitrate reduction (FNR) regulator acts as the cell’s master switch for the transition between anaerobic and aerobic respiration, controlling the expression of >300 genes in response to O2 availability. Oxygen is perceived through a reaction with FNR’s [4Fe-4S] cluster cofactor. In addition to its primary O2 signal, the FNR [4Fe-4S] cluster also reacts with nitric oxide (NO). In response to physiological concentrations of NO, FNR de-represses the transcription of hmp, which encodes a principal NO-detoxifying enzyme, and fails to activate the expression of the nitrate reductase (nar) operon, a significant source of endogenous cellular NO. Here, we show that the L28H variant of FNR, which is much less reactive towards O2 than wild-type FNR, remains highly reactive towards NO. A high resolution structure and molecular dynamics (MD) simulations of the closely related L28H-FNR from Aliivibrio fischeri revealed decreased conformational flexibility of the Cys20-Cys29 cluster-binding loop that is suggested to inhibit outer-sphere O2 reactivity, but only partially impair inner-sphere NO reactivity. Our data provide new insights into the mechanistic basis for how iron–sulfur cluster regulators can distinguish between O2 and NO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.