Abstract

ABSTRACTA double distribution function lattice Boltzmann method (LBM) with multirelaxation time is implemented to simulate the Rayleigh–Benard convection melting of a typical low-melting-point metal in a rectangular cavity. Typical cases frequently encountered in practice with constant heat flux/constant temperature boundary conditions are parametrically investigated, with corresponding dimensionless results outlined; the influence of inclination angle of the cavity is also clarified. The computational speed of the current LBM would reach about 40 times faster than that of conventional finite volume method as performed by commercial software Fluent. The obtained results would be valuable for guiding practical thermal design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.