Abstract

Rice straw is an agricultural byproduct primarily produced in Asian regions. It is crucial to discover an effective method for converting this waste into chemicals that can be utilized to substitute goods derived from fossil fuels. Pyrolysis serves as an interesting procedure to obtain bio-oil from this rice straw. The composition of the bio-oil obtained after the pyrolysis procedure contains a small quantity of value-added chemicals in addition to various gas components in the gas product. Therefore, the development of catalytic systems that improve this pyrolytic reaction is mandatory. Herein, the design of a dual catalyst bed (CEM/ZSM-5) that catalyzes the volatiles that it releases has been developed. The highest output of 42.1 wt.% of bio-oil, 29.9 wt.% of gases and 28.0 wt.% of bio-char was obtained. Nevertheless, the inclusion of single zeolites to biomass yields biofuel outputs of 42.8 wt.%, gas yields of 27.7 wt.%, and a bio-char yielding of 29.5 wt.%. Additionally, the addition of cement to biomass results in a bio-oil yield of 40.4 wt.% and 30.5 wt.% of gas, along with 29.1 wt.% of char. Regarding pyrolysis gas products, the H2 yield in the produced biogas was increased from 35.9 mL/g to 45.7 mL/g, and the CH4 output was increased from 21.1 mL/g to 27.4 mL/g. The bioenergy output was evaluated employing GC-FID and GC-MS (gas and biofuel). The dual catalytic bed had a significant impact on the contents of the generated biofuel, increasing the quantity of hydrocarbons and other value-added compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call