Abstract

Scalar coupling constants have been computed using the EOM-CCSD method for equilibrium structures of complexes stabilized by F--H...P hydrogen bonds, as well as structures along the proton-transfer coordinates of these complexes. Variations in the signs and absolute values of (1)J(F--H), (1h)J(H--P) and (2h)J(F--P) have been analyzed and interpreted in terms of changing hydrogen bond type. Of the three phosphorus bases (phosphine, trimethylphosphine and phosphinine) investigated in this study, trimethylphosphine forms the strongest complex with FH, and has the largest two-bond F--P coupling constant. Among the relatively simple phosphorus bases, it would appear to be a leading candidate for experimental NMR study. Similarities and differences are noted between the corresponding coupling constants (J) and the reduced coupling constants (K) across F--H...P and F--H...N hydrogen bonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.