Abstract

We study here the Mg-polysulfide confinement inside two structurally different model porous materials, viz., toray carbon paper (TC) and multiwalled carbon nanotubes (CNT), using operando Raman and postcycling ex-situ UV-vis spectroscopy. Sulfur encapsulated inside CNT (CNT-S) and TC (TC-S) serves as S-cathodes in a rechargeable room temperature Mg|S battery. Operando Raman spectroscopy indicates the presence of higher-order Mg-polysulfides at the CNT cathode. This is due to the combination of their entrapment inside CNT and also possibly to their localization in the liquid electrolyte in the vicinity of CNT-S. This finding is directly correlated to the ex-situ UV-vis spectroscopy, which shows a lesser degree of Mg-polysulfide dissolution into the electrolyte solution. In comparison, TC-S, where sulfur is encapsulated within the open matrix formed by the nanofiber network of the carbon paper, displays poorer polysulfide confinement. The distinct differences in their abilities to confine the Mg-polysulfides are corroborated by battery performance. In the current density range (0.05-1) C, the battery with CNT-S displays much higher specific capacities, being nearly two times that of TC-S at 1 C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.