Abstract

Previously, we and others have used cantilever-based techniques to measure droplet friction on various surfaces, but typically at low speeds U < 1 mm s-1; at higher speeds, friction measurements become inaccurate because of ringing artefacts. Here, we are able to eliminate the ringing noise using a critically damped cantilever. We measured droplet friction on a superhydrophobic surface over a wide range of speeds U = 10-5-10-1 m s-1 and identified two regimes corresponding to two different physical origins of droplet friction. At low speeds U < 1 cm s-1, the droplet is in contact with the top-most solid (Cassie-Baxter), and friction is dominated by contact-line pinning with Ffric force that is independent of U. In contrast, at high speeds U > 1 cm s-1, the droplet lifts off the surface, and friction is dominated by viscous dissipation in the air layer with Ffric ∝ U2/3 consistent with Landau-Levich-Derjaguin predictions. The same scaling applies for superhydrophobic and underwater superoleophobic surfaces despite their very different surface topographies and chemistries, i.e., the friction scaling law derived here is universal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.