Abstract

Electron energy loss spectroscopy performed in transmission electron microscopes is shown to directly render the photonic local density of states with unprecedented spatial resolution, currently below the nanometer. Two special cases are discussed in detail: (i) 2D photonic structures with the electrons moving along the translational axis of symmetry and (ii) quasiplanar plasmonic structures under normal incidence. Nanophotonics in general and plasmonics, in particular, should benefit from these results connecting the unmatched spatial resolution of electron energy loss spectroscopy with its ability to probe basic optical properties such as the photonic local density of states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call