Abstract

The strange Photo induced micro actuation (PIMA) properties associated with Cu doped Co-Ni-Al Ferromagnetic Shape Memory Alloys (FSMA) has showed enhancement of mechanical properties in our early studies. This enhancement and optimized PIMA properties have opened a scope of various laser-controlled real engineering applications. In this study, we have explored the microstructural scaling and determined the evolved force due to the laser action in optimized Cu doped Co-Ni-Al alloy system with a detailed insight. This unique PIMA property is rare in literature and actual reason are still not explored. EBSD, TEM, AFM/MFM based techniques were further adopted to understand the role of microstructure in more detail. The evolved magnetic domain patterns for actuating and non-actuating alloys have been analyzed in details. Atomic Force Microscopy was adopted to estimate the constitutive mechanical properties of the thin alloy samples by mechanical spectrometry. This estimation was directly used to predict a general trend in force distribution pattern of the Cu-Co-Ni-Al alloys strips through FEM analysis. The crux of FEM based model and its simulated results can be applied for real time PIMA oriented engineering application and device manufacturing. The detail microstructural exploration and its effect in the PIMA response along with generalized deflection-force model have been presented in the current study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call