Abstract

Efflux pumps are specialized transport proteins that play a key role in the bacterial defense against a wide spectrum of antibiotics. Hence, understanding the biophysical mechanism associated with this complex system of drug expulsion becomes crucial. This work deals with some vital aspects of the outer membrane factor (OMF) of MexAB-OprM. After being passed through MexB and MexA, efflux substrates have to go through OprM for their final judgment. Thus, it is very important to understand the periplasmic pore opening mechanism and the associated biophysical changes during this process. Our study captures a detailed analysis of the pore opening mechanism involving OprM. With powerful molecular dynamics (MD) techniques such as well-tempered metadynamics, the presence of metastable states in between open and closed states was confirmed. Also, upon mutating R376, the energy barrier for the conversion of the close to open conformation decreases, indicating an important role played by the residue. Further, constant pH MD was performed to capture the effect of pH in both conformations. OprM exhibits distinct conformational states at pH values greater than 5.5 and lower than 5.5, suggesting its pH-responsive characteristics. Overall, our study elucidates a crucial undertaking toward discovering potential inhibitors for MexAB-OprM efflux pumps.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call