Abstract

We investigate the role of partonic degrees of freedom in high-multiplicity p-Pb collisions at sqrt[s_{NN}]=5.02 TeV carried out at the Large Hadron Collider (LHC) by studying the production and collective flow of identified hadrons at intermediate p_{T} via the coalescence of soft partons from the viscous hydrodynamics (VISH2+1) and hard partons from the energy loss model, linear Boltzmann transport (LBT). We find that combining these intermediate p_{T} hadrons with the low p_{T} hadrons from the hydrodynamically expanding fluid and high p_{T} hadrons from the fragmentation of quenched jets, the resulting hydro-dynamics-coalescence-fragmentation model provides a nice description of measured p_{T} spectra and differential elliptic flow v_{2}(p_{T}) of pions, kaons, and protons over the p_{T} range from 0 to 6GeV. We further demonstrate the necessity of including the quark coalescence contribution to reproduce the experimentally observed approximate number of constituent quark scaling of hadron v_{2} at intermediate p_{T}. Our results thus indicate the importance of partonic degrees of freedom and also hint at the possible formation of quark-gluon plasma in high-multiplicity p-Pb collisions at the LHC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call