Abstract

Optical Mie resonators based on silicon nanostructures allow tuning of light-matter-interaction with advanced design concepts based on complementary metal–oxide–semiconductor (CMOS) compatible nanofabrication. Optically active materials such as transition-metal dichalcogenide (TMD) monolayers can be placed in the near-field region of such Mie resonators. Here, we experimentally demonstrate and verify by numerical simulations coupling between a MoSe2 monolayer and the near-field of dielectric nanoresonators. Through a comparison of dark-field (DF) scattering spectroscopy and photoluminescence excitation experiments (PLE), we show that the MoSe2 absorption can be enhanced via the near-field of a nanoresonator. We demonstrate spectral tuning of the absorption via the geometry of individual Mie resonators. We show that we indeed access the optical near-field of the nanoresonators, by measuring a spectral shift between the typical near-field resonances in PLE compared to the far-field resonances in DF scattering. Our results prove that using MoSe2 as an active probe allows accessing the optical near-field above photonic nanostructures, providing complementary information to sophisticated near-field microscopy equipment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call