Abstract

The Na(+) channel-subunit containing an Ile1488, Phe1489 and Met1490 (IFM) motif is critical for a fast inactivation process. BL-1, a model IFM-containing peptide with a sequence of acetyl-GGQDIFMTEEK-OH, was observed as a doubly charged potassium-adduct ion by electrospray ionization mass spectrometry (ESI-MS) and a singly charged ion by atmospheric-pressure matrix-assisted laser desorption/ionization mass spectrometry (AP-MALDI-MS). Two crown ethers were applied to demonstrate their desalting ability and then to confirm the potassium-adduct assignments. In order to probe the best binding condition for BL-1 with a local anesthetic drug, 5,5-diphenyhydantoin (DPH), a series of experiments were performed and the parameters affecting complexation were carefully investigated including molar ratios, reaction time and reaction temperature. The most effective conditions for the observation of the complex by ESI-MS were molar ratio of BL-1 and DPH of 1:28 after 18 h of incubation at 40 degrees C. In addition, collision-activated dissociation (CAD) was successfully applied to confirm the formation of the complex between BL-1 with DPH that is via a weak non-covalent bonding with a 1:1 stoichiometry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call