Abstract

Gravitational lensing observations of galaxy clusters have identified dark matter blobs with remarkably low baryonic content. We use such a blob to probe the particle nature of dark matter with x-ray observations. From these observations we improve the most conservative constraints from the Milky Way halo on a particular dark matter candidate, the sterile neutrino, by an order of magnitude. We also study high resolution x-ray grating spectra of a cluster of galaxies. Based on these conservative constraints obtained from cosmic x-ray observations alone, the low mass (${m}_{s}\ensuremath{\lesssim}10\text{ }\text{ }\mathrm{keV}$) and low mixing angle (${sin}^{2}(2\ensuremath{\theta})\ensuremath{\lesssim}{10}^{\ensuremath{-}6}$) sterile neutrino is still a viable dark matter candidate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.