Abstract
ABSTRACT The steepness of the central density profiles of dark matter (DM) in low-mass galaxy haloes (e.g. dwarf galaxies) is a powerful probe of the nature of DM. We propose a novel scheme to probe the inner profiles of galaxy subhaloes using stellar streams. We show that the present-day morphological and dynamical properties of accreted globular cluster (GC) streams – those produced from tidal stripping of GCs that initially evolved within satellite galaxies and later merged with the Milky Way (MW) – are sensitive to the central DM density profile and mass of their parent satellites. GCs that accrete within cuspy cold dark matter (CDM) subhaloes produce streams that are physically wider and dynamically hotter than streams that accrete inside cored subhaloes. A first comparison of MW streams ‘GD-1’ and ‘Jhelum’ (likely of accreted GC origin) with our simulations indicates a preference for cored subhaloes. If these results hold up in future data, the implication is that either the DM cusps were erased by baryonic feedback, or their subhaloes naturally possessed cored density profiles implying particle physics models beyond CDM. Moreover, accreted GC streams are highly structured and exhibit complex morphological features (e.g. parallel structures and ‘spurs’). This implies that the accretion scenario can naturally explain the recently observed peculiarities in some of the MW streams. We also propose a novel mechanism for forming ‘gaps’ in stellar streams when the remnant of the parent subhalo (which hosted the GC) later passes through the GC stream. This encounter can last a longer time (and have more of an impact) than the random encounters with DM subhaloes previously considered, because the GC stream and its parent subhalo are on similar orbits with small relative velocities. Current and future surveys of the MW halo will uncover numerous faint stellar streams and provide the data needed to substantiate our preliminary tests with this new probe of DM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.