Abstract

Hyperconjugation, a weak interaction in organic chemistry, can have a strong effect on aromaticity, leading to the concept of hyperconjugative aromaticity, which was first proposed by Mulliken in 1939. However, most studies are limited to main group chemistry. Here we report the most aromatic and antiaromatic pyrrolium ring by maximizing the hyperconjugation caused by transition metal fragments and the push-pull effect. Our calculations reveal that the origin of the outperformance of transition metal substituents over main group ones on hyperconjugative aromaticity could be attributed to their higher highest occupied molecular orbitals (HOMOs). Among the group 11 transition metals, a silver substituent results in the best performance. All these findings highlight the magic of the transition metal (silver) and could be particularly helpful for the design of other aromatic and antiaromatic counterparts based on a nonaromatic parent species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.