Abstract

Prepulse inhibition of acoustic startle (PPI) is deficient in several heritable brain disorders. In rats, the dopamine agonist, apomorphine (APO), reduces PPI and expression of the early gene, c-fos, within the nucleus accumbens (NAC) core. Both of these effects are greater in Sprague-Dawley (SD) vs. Long Evans (LE) rats, and this PPI strain pattern is inherited. Here, we examined phosphorylation of cyclic-AMP response element-binding protein (CREB), a putative intermediary step between dopamine receptor stimulation and Fos expression, in SD and LE rats. The effects of APO (vehicle vs. 0.5mg/kg) on PPI were tested in SD and LE rats in a within-subject design. Seven days later, under conditions mimicking PPI testing, half of the rats from each strain received either vehicle or APO (0.5mg/kg) 20min before euthanasia. NAC CREB and phospho-CREB levels were quantified from tissue sections reacted immunohistochemically. APO reduced PPI in both strains, with a significantly greater effect in SD vs. LE rats. APO also significantly reduced NAC core phospho-CREB levels in both strains, with a significantly greater effect in SD vs. LE rats. Among SD rats receiving APO, the reduction in NAC core CREB phosphorylation correlated significantly with the APO-induced reduction in PPI (R = 0.49). A dose of APO that disrupts PPI of acoustic startle causes a profound suppression of CREB phosphorylation in the NAC; both dopamine-sensitive behavioral and molecular phenotypes are more robust in SD vs. LE rats, and within SD rats, they are significantly correlated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call