Abstract

The N -methyl-D-aspartate (NMDA) receptor plays a central role in learning and memory in the mammalian CNS. At normal neuronal resting membrane potentials, the pore of this glutamate-gated ion channel is blocked by a Mg(2+) ion. Previous work suggests that the Mg(2+) binding site is quite novel, involving several asparagine residues and a cation-pi interaction between Mg(2+) and a conserved tryptophan in the pore. Using unnatural amino acid mutagenesis, we show that no such cation-pi interaction exists. The implicated tryptophan instead appears to play a structural role that can only be fulfilled by a rigid, flat, hydrophobic residue. This is the first demonstration of unnatural amino acid incorporation in the NMDA receptor, and it opens the way for future investigations of this pivotal neuroreceptor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call