Abstract

Modulation of the charge carrier density in a Mott material by remote doping from a highly doped conventional band insulator is proposed to test theoretical predictions of band filling control of the Mott metal-insulator transition without introducing lattice distortions or disorder, as is the case for chemical doping. The approach is experimentally tested using ultrathin (2.5 nm) NdNiO3 films that are epitaxially grown on La-doped SrTiO3 films. We show that remote doping systematically changes the charge carrier density in the NdNiO3 film and causes a moderate shift in the metal-insulator transition temperature. These results are discussed in the context of theoretical models of this class of materials exhibiting a metal-insulator transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.