Abstract

The metal binding properties of isoleucyl-tRNA synthetase (IleRS) from Escherichia coli were studied by in vivo substitution of the enzyme-bound metals. Purified E. coli IleRS was shown to have two tightly bound zinc atoms per active site. Cobalt- and cadmium-substituted IleRS were also found to contain two tightly bound Co2+ and Cd2+ atoms per polypeptide chain, respectively. The d-d transitions in the low energy absorption spectrum of Co(2+)-substituted IleRS were characteristic of that expected for two tetrahedrally coordinated Co2+ metals. Apo-IleRS was found to be inactive in both the aminoacylation of tRNA(Ile) and in the isoleucine-dependent ATP-pyrophosphate exchange reactions. Both Co(2+)- and Cd(2+)-substituted IleRS were found to have kcat/Km values in the isoleucine-dependent ATP-pyrophosphate exchange assay approximately 5-fold lower than the native Zn2+ enzyme. A single enzyme-bound Zn2+ or Co2+ atom per polypeptide chain could be removed by dialysis of Zn(2+)- or Co(2+)-substituted IleRS against 1,10-phenanthroline. Removal of one of the two enzyme-bound Zn2+ atoms per polypeptide chain with 1,10-phenanthroline was found to decrease (kcat/Km)Ile by approximately 130-fold. The dependence of the kinetic parameters on the identity and number of enzyme-bound metals in the isoleucine-dependent ATP-pyrophosphate exchange reaction suggests that at least one enzyme-bound metal is indirectly involved in aminoacyladenylate formation. Metal substitution or removal of one of the two enzyme-bound metals in IleRS was found to have little effect on the Km value for tRNA(Ile) or the kcat value for aminoacylation of tRNA(Ile).(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call