Abstract

The transient dynamic swelling and dissolution behavior during drug release from hydroxypropylmethyl cellulose (HPMC) matrices was investigated using fluorescein as a model drug. A new flow-through cell capable of providing a well-defined hydrodynamic condition and a non-destructive mode of operation was designed for this purpose to assess the associated moving front kinetics. The results obtained show a continuous increase in transient gel layer thickness irrespective of the polymer viscosity grade or drug loading. This is attributed to the faster rate of swelling solvent penetration than that of polymer dissolution under the present experimental condition. On the other hand, the observed shrinkage of sample diameter over a longer time period demonstrates that polymer dissolution does indeed occur in HPMC matrices. Further, both the rates of polymer swelling and dissolution as well as the corresponding rate of drug release increase with either higher levels of drug loading or lower viscosity grades of HPMC. For water-soluble drugs, the present results suggest that the effect of HPMC dissolution on drug release is insignificant and the release kinetics are mostly regulated by a swelling-controlled diffusional process, particularly for higher viscosity grades of HPMC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call