Abstract

NsrR from Streptomyces coelicolor is a bacterial nitric oxide (NO) sensor/nitrosative stress regulator as its primary function, and has been shown to have differential response at low, mid, and high levels of NO. These must correspond to discrete structural changes at the protein-bound [4Fe-4S] cluster in response to stepwise nitrosylation of the cluster. We have investigated the effect of the monohapto carboxylate ligand in the site differentiated [4Fe-4S] cluster cofactor of the protein NsrR on modulating its reactivity to NO with a focus on indentifying mechanistic intermediates. We have prepared a synthetic model [4Fe-4S] cluster complex with tripodal ligand and one single site differentiated site occupied by either thiolate or carboxylate ligand. We report here the mechanistic details of sequential steps of nitrosylation as observed by ESI MS and IR spectroscopy. Parallel non-denaturing mass spectrometry analyses were performed using site-differentiated variants of NsrR with the native aspartic acid, cysteine, or alanine in the position of the forth ligand to the cluster. A mono-nitrosylated synthetic [4Fe-4S] cluster was observed for the first time in a biologically-relevant thiolate-based coordination environment. Combined synthetic and protein data give unprecedented clarity in the modulation of nitrosylation of a [4Fe-4S] cluster.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.