Abstract

We have developed a model for silica polymerization at ambient temperatures and low densities and have studied this using reactive Monte Carlo simulations. The model focuses on SiO4 coordination with the energetics of hydrolysis and condensation reactions treated via the reaction ensemble. The simplicity of the model makes large system sizes accessible on a modest computation budget, although it is necessary to make additional assumptions in order to use the reactive Monte Carlo method as a simulation of the system dynamics. Excellent agreement for the evolution of the Qn distribution is obtained upon comparing the simulation results to experimental observations. The analysis of simulation trajectories provides mechanistic insight into the polymerization process, showing the following three regimes: oligomerization (0−1 h), ring formation (1−2.6 h), and cluster aggregation (2.6−5.6 h).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.