Abstract

The plant cell wall has a somewhat paradoxical mechanical role in the plant: it must be strong enough to resist the high turgor of the cell contents, but at the right moment it must yield to that pressure to allow cell growth. The control of the cell wall's mechanical properties underlies its ability to regulate growth correctly. Recently, we have reported on changes in cell wall elasticity associated with organ formation at the shoot apical meristem in Arabidopsis thaliana. These changes in cell wall elasticity were strongly correlated with changes in pectin matrix chemistry, and we have previously shown that changes in pectin chemistry can dramatically effect organ formation. These findings point to a important role of the cell wall pectin matrix in cell growth control of higher plants. In this addendum we will discuss the biological significance of these new observations, and will place the scientific advances made possible through Atomic Force Microscopy-based nano-indentations in a relatable context with past experiments on cell wall mechanics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.