Abstract

We present a photometric and spectroscopic study of the white dwarf population of the populous, intermediate-age open cluster M35 (NGC 2168); this study expands upon our previous study of the white dwarfs in this cluster. We spectroscopically confirm 14 white dwarfs in the field of the cluster: 12 DAs, 1 hot DQ, and 1 DB star. For each DA, we determine the white dwarf mass and cooling age, from which we derive the each star's progenitor mass. These data are then added to the empirical initial-final mass relation (IFMR), where the M35 WDs contribute significantly to the high-mass end of the relation. The resulting points are consistent with previously-published linear fits to the IFMR, modulo moderate systematics introduced by the uncertainty in the star cluster age. Based on this cluster alone, the observational lower limit on the maximum mass of white dwarf progenitors is found to be ~5.1-5.2 solar masses at the 95% confidence level; including data from other young open clusters raises this limit as high as 7.1 solar masses, depending on the cluster membership of three massive WDs and the core-composition of the most massive WDs. We find that the apparent distance modulus and extinction derived solely from the cluster white dwarfs [(m-M)v=10.45 +/- 0.08 and E(B-V)=0.185 +/- 0.010, respectively] is fully consistent with that derived from main-sequence fitting techniques. Four M35 WDs may be massive enough to have oxygen-neon cores; the assumed core composition does not significantly affect the empirical IFMR. Finally, the two non-DA WDs in M35 are photometrically consistent with cluster membership; further analysis is required to determine their memberships.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.