Abstract

Understanding the combustion of methyl esters is crucial to elucidate kinetic pathways and predict combustion parameters, soot yields, and fuel performance of biodiesel, however most kinetic studies of methyl esters have focused on smaller, surrogate model esters. Methyl hexanoate is a larger methyl ester approaching the chain length of methyl esters found in biodiesel and has not received as much research attention as other smaller esters. The purpose of this work is to present the first atmospheric pressure combustion data of methyl hexanoate, CH3CH2CH2CH2CH2COOCH3. Mixtures of 2% methyl hexanoate in O2 and N2 are studied using a plug flow reactor at atmospheric pressure, wall temperatures from 573 to 973 K, residence times from roughly 1-2 s., and fuel equivalence ratios of 1, 1.5, and 2. Exhaust gases are analyzed by a gas chromatograph-mass spectrometer system and species mole fractions are presented. The literature model shows satisfactory agreement with the experimental species profiles and improvements for future mechanistic studies are suggested. In particular, this work proposes new unimolecular decomposition pathways of methyl hexanoate to form methanol or methyl acetate. Furthermore, the experiment detected three unsaturated esters that are direct products of the low temperature oxidation chemistry and it provides more insight into branching ratios for the formation of methyl hexanoate radicals and for the decomposition of hydroperoxyalkyl radicals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.