Abstract

p-Type dye-sensitized solar cells (p-DSCs) have attracted increasing attention recently, but they suffer from low fill factors (FFs) and unsatisfactory efficiencies. A full comprehension of the hole transport and recombination processes in the NiO p-DSC is of paramount importance for both the fundamental study and the practical device optimization. In this article, NiO p-DSCs were systematically probed under various bias and illumination conditions using electrochemical impedance spectroscopy (EIS), intensity modulated photocurrent spectroscopy (IMPS), and intensity modulated photovoltage spectroscopy (IMVS). Under the constant 1 sun illumination, the recombination resistance (Rrec) of the cell deviates from an exponential relationship with the potential and saturates at ∼130 Ω cm2 under the short circuit condition, which is ascribed to the overwhelming recombination with the reduced dye anions. Such a small Rrec results in the small dc resistance, which decreases the “flatness” of the J–V curve. The quan...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.