Abstract

It was recently suggested that liquid water primarily comprises hydrogen-bonded rings and chains, as opposed to the traditionally accepted locally tetrahedral structure (Wernet et al. Science 2004, 304, 995). This controversial conclusion was primarily based on comparison between experimental and calculated X-ray absorption spectra (XAS) using computer-generated ice-like 11-molecule clusters. Here we present calculations which conclusively show that when hydrogen-bonding configurations are chosen randomly, the calculated XAS does not reproduce the experimental XAS regardless of the bonding model employed (i.e., rings and chains vs tetrahedral). Furthermore, we also present an analysis of a recently introduced asymmetric water potential (Soper, A. K. J. Phys.: Condens. Matter 2005, 17, S3273), which is representative of the rings and chains structure, and make comparisons with the standard SPC/E potential, which represents the locally tetrahedral structure. We find that the calculated XAS from both potentials is inconsistent with the experimental XAS. However, we also show the calculated electric field distribution from the rings and chains structure is strongly bimodal and highly inconsistent with the experimental Raman spectrum, thus casting serious doubt on the validity of the rings and chains model for liquid water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.