Abstract

This work investigates the link between residual entropy and viscosity based on wide-ranging, highly accurate experimental and simulation data. This link was originally postulated by Rosenfeld in 1977 [Rosenfeld Y (1977) Phys Rev A 15:2545-2549], and it is shown that this scaling results in an approximately monovariate relationship between residual entropy and reduced viscosity for a wide range of molecular fluids [argon, methane, [Formula: see text], [Formula: see text], refrigerant R-134a (1,1,1,2-tetrafluoroethane), refrigerant R-125 (pentafluoroethane), methanol, and water] and a range of model potentials (hard sphere, inverse power, Lennard-Jones, and Weeks-Chandler-Andersen). While the proposed "universal" correlation of Rosenfeld is shown to be far from universal, when used with the appropriate density scaling for molecular fluids, the viscosity of nonassociating molecular fluids can be mapped onto the model potentials. This mapping results in a length scale that is proportional to the cube root of experimentally measurable liquid volume values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.