Abstract
HypothesisAsphaltenes subfractions with distinct interfacial behaviors may play different roles in stabilizing oil–water emulsions. ExperimentsIn this work, whole asphaltenes were separated into interfacially active asphaltenes (IAA) and interfacially non-active asphaltenes (INAA). Employing advanced nanomechanical techniques, we have explored the compositions, morphologies, sizes, adsorption, and interfacial behaviors of IAA and INAA. FindingsIAA exhibits a high and unevenly distributed oxygen content, distinguishing it from INAA. In toluene, the diameters of IAA and INAA are about 60 nm and 6 nm, respectively. When adsorbed irreversibly on mica surfaces, the thickness of the IAA and INAA film was measured at ∼5.5 nm or 1 nm, respectively; while in a toluene solution, the film thickness reached ∼46 nm and 3.1 nm for IAA and INAA, respectively. IAA demonstrates superior interfacial activity, and elastic/viscous moduli compared to INAA at the water-toluene interface. Quantified surface force measurements reveal that IAA stabilizes water droplets in toluene at a concentration of only 10 mg/L, while INAA requires a higher concentration of 100 mg/L. This work provides the first comprehensive investigation into the adsorption and interfacial behaviors of asphaltene subfractions and provides useful insights into the asphaltenes-stabilization mechanism of emulsions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.