Abstract

Metallo-β-lactamases (MBLs) are a growing threat to the continued efficacy of β-lactam antibiotics. Recently, aspergillomarasmine A (AMA) was identified as an MBL inhibitor, but the mode of inhibition was not fully characterized. Equilibrium dialysis and metal analysis studies revealed that 2 equiv of AMA effectively removes 1 equiv of Zn(II) from MBLs NDM-1, VIM-2, and IMP-7 when the MBL is at micromolar concentrations. Conversely, 1H NMR studies revealed that 2 equiv of AMA remove 2 equiv of Co(II) from Co(II)-substituted NDM-1, VIM-2, and IMP-7 when the MBL/AMA are at millimolar concentrations. Our findings reveal that AMA inhibits the MBLs by removal of the active site metal ions required for β-lactam hydrolysis among the most clinically significant MBLs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.