Abstract

The hydrophobic interaction plays an essential role in various natural phenomena and industrial processes. Previous studies on the hydrophobic interaction focused mainly on the interaction between hydrophobic solid surfaces for which the effective range of hydrophobic attraction was reported to vary from ∼10 nm to >1 μm. Here, we report studies of the interaction between an air bubble in water used as a probe attached to the cantilever of an atomic force microscope and partially hydrophobized mica surfaces. No bubble attachment was observed for bare hydrophilic mica, but attachment behaviors and attraction with an exponential decay length of 0.8–1.0 nm were observed between the air bubble and partially hydrophobized mica as characterized by a water contact angle on the mica surface that varied from 45° to 85°. Our results demonstrate the important roles of the additional attraction at partially hydrophobized surfaces and hydrodynamic conditions in bubble attachment to substrate surfaces and provide new in...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.